First-principles studies of recombination mechanisms in light emitters

Chris G. Van de Walle
Materials Department, University of California, Santa Barbara

Acknowledgments:
Cyrus Dreyer (Stony Brook University)
Darshana Wickramaratne, John Lyons (Naval Research Laboratory)
Jimmy-Xuan Shen (Lawrence Berkeley National Lab.)
Anderson Janotti (University of Delaware)
Audrius Alkauskas (Ctr. f. Phys. Sci. &Tech., Lithuania)
Qimin Yan (Temple University)
Manos Kioupakis (U. Michigan)
Georg Kresse (University of Vienna)
Jim Speck (UCSB)
NSF, DOE

Simons Wave Collaboration — Short Course & Workshop:
Quantum Mechanics and Semiconductors
May 16-17, 2019
University of California, Santa Barbara
“ABC model” for internal quantum efficiency of LEDs

Defect-assisted: $R = An$

Radiative: $R = Bn^2$

Auger: $R = Cn^3$

“Shockley-Read-Hall”

$$\eta = \frac{Bn^2}{An + Bn^2 + Cn^3}$$
Internal quantum efficiency: Experimental

\[\eta = \frac{Bn^2}{An + Bn^2 + Cn^3} \]

Will illustrate with GaN, but concepts and methodologies are general
Loss mechanisms: Auger

\[R = C n^3 \]

“Droop”
Auger Recombination in GaN and InGaN

Theory ($T=300$ K, 2.5 eV):

$C \approx 10^{-30}$ cm6s$^{-1}$

Experiment:

$3.5 \times 10^{-31} - 2.0 \times 10^{-30}$ cm6s$^{-1}$

Shockley-Read-Hall (SRH), Auger

Loss: max IQE

\[R = An \]

Loss: “Droop”

\[R = Cn^3 \]
Shockley-Read-Hall recombination: Microscopic mechanisms still unknown

- What are the mechanisms?
- What defects/impurities are responsible?
- What are the rates?
Computational Methods

- Density functional theory (DFT), VASP
- Traditional functionals (LDA, GGA): “Band-gap problem”
 - makes quantitative predictions difficult
- Hybrid functional (HSE)
 - Includes a fraction of screened Hartree-Fock exchange
 - Accurate structural parameters, band gaps
 - Accurate prediction of defects
 - formation energies
 - transition levels

Configuration Coordinate diagram

Charge state D^0 has different atomic configuration from D^{+1}.
Configuration Coordinate diagram

Electron capture

$D^{+1} + e^- + h^+$

$D^0 + h^+$

D^{+1}

ΔE

Energy

Generalized coordinate Q

CBM

(+1/0)

VBM

E_g
Configuration Coordinate diagram

Energy

Generalized coordinate Q

$D^0 + h^+$

$D^+ + e^- + h^+$

$D^+ - 1$

ΔE

Hole capture

CBM

(+1/0)

VBM

E_g

Configuration Coordinate diagram from first principles

C. E Dreyer et al., APL 108, 141101 (2016).
Configuration Coordinate diagram from first principles

Transition from +1 to 0 charge state: combination of QM tunneling and thermal (phonon-assisted) transition

C. E Dreyer et al., APL 108, 141101 (2016).
Nonradiative capture coefficient from Fermi's golden rule

\[C_n = \frac{2\pi\Omega}{\hbar} g \sum_m w_m \sum_n \left| \Delta H_{im;fn}^{e-ph} \right|^2 \delta(E_{im} - E_{fn}) \]

\[\Delta H_{im;fn}^{e-ph} = \sum_k \langle \psi_i | \partial \hat{H} / \partial Q_k | \psi_f \rangle \langle \chi_{im} | Q_k - Q_{0;k} | \chi_{fn} \rangle \]

\(W_{ij} \) Electron-phonon coupling

Overlap between vibronic states

Shockley-Read-Hall in InGaN

- SRH rate is governed by slower of electron or hole capture process
 - Electron capture coefficient \(C_n \) decreases exponentially with distance from the conduction band.
 - Hole capture coefficient \(C_p \) decreases exponentially with distance from the valence band.

- Most efficient centers: level near midgap.

\[
R_{SRH} = nN \frac{C_nC_p}{C_n + C_p}
\]

\(r \): carrier density, \(N \): defect density
Shockley-Read-Hall in InGaN

• Identify plausible recombination centers
 – Point defects
 – Impurities

• Gallium vacancies
 – Introduce midgap levels
 – But: high formation energy
 – Complexes with
 » Oxygen
 » Hydrogen

\[V_{Ga-O_N-2H} \] complex
• $V_{Ga-O-N-2H}$ complex
• SRH coefficient A
 Assume $N=10^{16}$ cm$^{-3}$, $n=10^{18}$ cm$^{-3}$, $T=120^\circ$C
• Radiative versus nonradiative recombination:
 – SRH rate becomes of same magnitude as radiative recombination rate if $A=10^7$ s$^{-1}$
 – 2.4 eV (green) or below: significant defect-assisted nonradiative recombination
• Impurities can also cause SRH!

C. E. Dreyer et al., APL 108, 141101 (2016).
Summary

• First-principles calculations:
 – Quantitative results + insights in physics
• Progress in methodology
• Nonradiative recombination

References: