Long-range Correlations, Finite-size Effects, and Intrinsic Defects in Organic Semiconductors

Denis Andrienko
Max Planck Institute for Polymer Research
Mainz, Germany
Conjugated Molecules

dithienothiophene
thienothiophene
thienopyrazine
carbazole
fluorene
thienopyrimidine
carbazole
thienothiophene
benzothiadiazole
cyclopentadithiophene
benzodithiophene
triphenylamine
polyaniline
tri phenylene
perylenediimide
porphyrin
hexabenzocoronene
pentacene
coronene
PCBM
Ir(ppy)$_3$
Organic Light Emitting Diodes

Lumiblade
Universal Display Corporation

luminous efficacy
100 lm / W

Organic Solar Cells

efficiency
14 %

Organic Electronics Saxony

Organic Field Effect Transistors

COPE center GaTech

mobility
20 cm² / V s
Denis Andrienko – Max Planck Institute for Polymer Research

Experimental Workflow

- X-ray diffraction
- Grazing incidence
- Absorption/emission spectra
- Solid-state NMR
- Cyclic Voltammetry
- Fast Transient spectroscopy
- Impedance spectroscopy
- Charge extraction
- Charge Extraction by Linearly Increasing Voltage
- Time of Flight measurements
- Microwave conductivity
- Terahertz spectroscopy
- Scanning tunneling microscopy
- Atomic force microscopy
- Kelvin probe microscopy

PCBM

Synthesized for anti HIV treatment
Excellent soluble acceptor

Computational Design

Quantum Chemistry
- Ground/Excited states
- Electrostatic multipoles
- Polarizabilities

Statistical Physics
- Advanced sampling techniques
- Master Equation solvers
- Long-range Interactions

Continuous Models
- Drift-diffusion solvers
- Light in-out-coupling

1nm
100nm
1μm

no fitting parameters, quantitative accuracy
Methods

Software package

Versatile Object-oriented Toolkit for Charge transport Applications

www.votca.org

2019: interfaced to Schrödinger

Typical OLED hosts

Density of states

<table>
<thead>
<tr>
<th></th>
<th>2-TNATA</th>
<th>Spiro-TAD</th>
<th>NPB</th>
<th>TCTA</th>
<th>CBP</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE (eV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exp</td>
<td>5.0</td>
<td>5.3</td>
<td>5.4</td>
<td>5.7</td>
<td>6.0</td>
</tr>
<tr>
<td>sim</td>
<td>4.99</td>
<td>5.31</td>
<td>5.33</td>
<td>5.69</td>
<td>6.42</td>
</tr>
<tr>
<td>σ (eV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exp</td>
<td>0.10</td>
<td>0.09</td>
<td>0.09</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>sim</td>
<td>0.098</td>
<td>0.090</td>
<td>0.087</td>
<td>0.112</td>
<td>0.096</td>
</tr>
</tbody>
</table>

2-TNATA; Thickness: 210 nm

TCTA; Thickness: 240 nm

<table>
<thead>
<tr>
<th></th>
<th>2-TNATA</th>
<th>TCTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ (eV)</td>
<td>0.098</td>
<td>0.112</td>
</tr>
<tr>
<td>$\mu \times 10^{-8}$ (m2/Vs)</td>
<td>0.185</td>
<td>1.01</td>
</tr>
<tr>
<td>α (nm)</td>
<td>1.31</td>
<td>1.34</td>
</tr>
</tbody>
</table>
Finite-size effects

\[\mu(F, \rho, T, \text{material, processing}) \]

Simulation boxes

$512 = 8 \times 8 \times 8$
$2197 = 13 \times 13 \times 13$
$4096 = 16 \times 16 \times 16$
$13824 = 24 \times 24 \times 24$

Atomistic MD
- NPT ensemble
- Equilibration above glass T
- Quenching to room T
Finite size effects

Mobility does not converge with the increase of the box size?
Periodic boundary conditions

Average energy

\[
\frac{E_\infty}{\sigma} = -\frac{\sigma}{k_B T}
\]

\[
E_N = \frac{\left(\sum_{n=1}^{N} \epsilon_n e^{-\beta \epsilon_n} \right)}{\left(\sum_{n=1}^{N} e^{-\beta \epsilon_n} \right)}
\]

Dispersive to non-dispersive transport

\[
\left(\frac{\sigma}{k_B T} \right)^2 \sim -5.7 + \ln N
\]

10,000 molecules max (ZINDO level)
30 \times 30 \times 30 lattice
Sampling of full DOS is not possible
Temperature-scaling

\[
\left(\frac{\sigma}{k_B T} \right)^2 = -5.7 + 1.05 \ln N
\]

non-dispersive transport at high temperatures and use temperature dependence to extrapolate to the room temperature

\[
\mu(T) = \frac{\mu_0}{T^{3/2}} \exp \left[- \left(\frac{a}{T} \right) - \left(\frac{b}{T} \right)^2 \right]
\]

K. Seki and M. Tachiya

After scaling

A. Lukyanov, D. Andrienko
P. Kordt et al, *PCCP* 2015
Intrinsic Defects
SCLC slope - test for trapped carriers
Space-charge Limited Currents

- Holes (IE) small molecules
- Holes (IE) polymers
- Electrons (EA) small molecules
- Electrons (EA) polymers [Nicolai et al.]

Slope m (-)

IE or EA (eV)
IE$_{\text{H}_2\text{O}} = 12.65$ eV
Long-Range Effects
From molecule to molecular solid

Vacuum Bulk electrostatics Bulk polarization

$E_{A\,(\text{Vacuum})}$

D_{FT}

$\Delta^{(1)}$

$\Delta^{(2)}$

Denis Andrienko – Max Planck Institute for Polymer Research
Typical organic donors

Quadrupoles or dimerized dipoles
Charge-quadrupole interaction

\[E_{q,Q} \sim \frac{qQ}{4\pi \varepsilon_0 r_{12}^3} \]

\[E_{q,Q}^{\text{tot}} \sim \int dr r^2 \frac{qQ}{4\pi \varepsilon_0 r^3} \sim \log(r) \sim \infty \]

Recall the Madelung problem!
Saturated value is at -0.7 eV!

Ewald summation

Periodic boundary conditions

Periodic background
Aperiodic charge

Extension of the Ewald sum to
- aperiodic charges/excitons
- distributed multipoles
- induction effects

Band structure engineering

Intermixed systems
Unscreened interactions

\[E_{q,Q} = \frac{qQ_1}{4\pi \varepsilon_0 r_{12}^3} + \frac{qQ_2}{4\pi \varepsilon_0 r_{13}^3} + \ldots \]
Long-range fields lead to continuous changes of IE and V_{oc}

Long-Range Effects in OPVs
Charge transfer state

acceptor (C60)

Polaron (-)

CT exciton

Polaron (+)

Frenkel exciton

donor (DCV4T)
Binding energy at a flat interface

Rough interfaces

Electrostatics at rough interfaces

Barrier-free splitting of CT states

\[B(c) = \Delta h_A - \Delta h_D(c) \]

\(B > 0 \) = CT splitting

\(\Delta h_A \)- donor molecule in the acceptor phase
Design coordinates

\[\Delta \Gamma = \Gamma - \Gamma_0 \text{ [eV]} \]

\[\Delta G_e + \Delta G_h [\text{eV}] \]
Blue OLED
Phosphor-sensitized fluorescence
Phosphor-sensitized fluorescence

Denis Andrienko – Max Planck Institute for Polymer Research

Phosphor-sensitized fluorescence

MD simulations of ternary mixtures
$k_{\text{FRET}} = k_{\text{ph}} \left(\frac{R_{\text{FRET}}}{r} \right)^6$

I just don't have the energy to go out at night ever since I switched from being vegan to being solar.